The Three Chemical Steps of Tn10/IS10 Transposition Involve Repeated Utilization of a Single Active Site

نویسندگان

  • Silvia Bolland
  • Nancy Kleckner
چکیده

Nonreplicative transposition by Tn10/IS10 involves three chemical steps at each transposon end: cleavage of the two strands plus joining of one strand to target DNA. These steps occur within a synaptic complex comprising two transposon ends and monomers of IS10 transposase. We report four transposase mutations that individually abolish each of the three chemical steps without affecting the synaptic complex. We conclude that a single constellation of residues, the "active site," directly catalyzes each of the three steps. Analyses of reactions containing mixtures of wild-type and catalysis-defective transposases indicate that a single transposase monomer at each end catalyzes the cleavage of two strands and that strand transfer is carried out by the same monomers that previously catalyzed cleavage. These and other data suggest that one active site unit carries out all three reactions in succession at one transposon end.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple copies of IS10 in the Enterobacter cloacae MD36 chromosome.

Repetitive sequences were isolated and characterized as double-stranded DNA fragments by treatment with S1 nuclease after denaturation and renaturation of the total DNA of Enterobacter cloacae MD36. One repetitive sequence was identical to the nucleotide sequence of IS10-right (IS10R), which is the active element in the plasmid-associated transposon Tn10. Unexpectedly, 15 copies of IS10R were f...

متن کامل

Tn10 Transposition via a DNA Hairpin Intermediate

We present evidence that excision of the nonreplicative transposon Tn10 involves three distinct chemical steps, first-strand nicking, hairpin formation, and hairpin resolution. This three-step mechanism makes it possible for a single protein-active site to cleave two DNA strands of opposite polarity, as appears to be the case in this reaction. We infer the existence of alternating bifunctionali...

متن کامل

Single Active Site Catalysis of the Successive Phosphoryl Transfer Steps by DNA Transposases Insights from Phosphorothioate Stereoselectivity

The transposase family of proteins mediate DNA transposition or retroviral DNA integration via multistep phosphoryl transfer reactions. For Tn10 and phage Mu, a single active site of one transposase protomer catalyzes the successive transposition reaction steps. We examined phosphorothioate stereoselectivity at the scissile position for all four reaction steps catalyzed by the Tn10 transposase....

متن کامل

Genetic evidence against intramolecular rejoining of the donor DNA molecule following IS10 transposition.

Tn10 and IS10 transpose by a nonreplicative mechanism in which the transposon is excised from the donor molecule and integrated into a target DNA site, leaving behind a break at the original donor site. The fate of this broken donor DNA molecule is not known. We describe here two experiments that address this issue. One experiment demonstrates that a polar IS10 element gives rise to polarity-re...

متن کامل

Base Flipping in Tn10 Transposition: An Active Flip and Capture Mechanism

The bacterial Tn5 and Tn10 transposases have a single active site that cuts both strands of DNA at their respective transposon ends. This is achieved using a hairpin intermediate that requires the DNA to change conformation during the reaction. In Tn5 these changes are controlled in part by a flipped nucleoside that is stacked on a tryptophan residue in a hydrophobic pocket of the transposase. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 84  شماره 

صفحات  -

تاریخ انتشار 1996